organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tegaserod maleate

Qingfang Cheng,* Xingyou Xu, Tianya Liu and Cheng Zhang

Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China Correspondence e-mail: cheng_qingfang@yahoo.com.cn

Received 13 September 2007; accepted 26 September 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.049; wR factor = 0.084; data-to-parameter ratio = 15.1.

The title compound, [(5-methoxyindol-3-yl)methylenehydrazino]-(pentylamino)methaniminium maleate, $C_{16}H_{24}N_5O^+$.- $C_4H_3O_4^-$, was synthesized by the reaction of tegaserod and maleic acid in anhydrous ethanol. In the tegaserod cation, the guanidyl group is protonated. A number of intermolecular $N-H\cdots O$ hydrogen bonds stabilize the crystal packing.

Related literature

For related crystal structures, see: Su & Zhu (2004); Sun *et al.* (2007). For biological activities of tegaserod maleate, see: Satish *et al.* (2001); Tack *et al.* (2001); Schikowski *et al.* (2002); Kamm *et al.* (2005).

Experimental

Crystal data

 $\begin{array}{l} {\rm C_{16}H_{24}N_5O^+{\rm \cdot}C_4H_3O_4^-} \\ {M_r} = 417.47 \\ {\rm Monoclinic, \ } C2/c \\ a = 24.873 \ (3) \\ {\rm \AA} \\ b = 8.4962 \ (16) \\ {\rm \AA} \\ c = 22.294 \ (2) \\ {\rm \AA} \\ \beta = 93.732 \ (2)^\circ \end{array}$

V = 4701.3 (11) Å³ Z = 8 Mo Kα radiation μ = 0.09 mm⁻¹ T = 298 (2) K 0.55 × 0.42 × 0.18 mm

Data collection

```
Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T_{\rm min} = 0.954, T_{\rm max} = 0.985
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	12 restraints
$vR(F^2) = 0.084$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
110 reflections	$\Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$
273 parameters	

9394 measured reflections

 $R_{\rm int} = 0.058$

4110 independent reflections

1423 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond	geometry (Α,	0)	
---------------	------------	----	----	--

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O2^{i}$ $N3 - H3 \cdots O2^{ii}$ $N5 - H5B \cdots O1^{ii}$ $N5 - H5A \cdots O4$ $O3 - H3A \cdots O1$	0.86 0.86 0.86 0.86 0.86 0.82	2.01 1.97 2.03 2.08 1.61	2.829 (3) 2.809 (3) 2.885 (3) 2.915 (4) 2.432 (3)	159 164 171 165 175
00 11011 01	0.02	1101	21102 (0)	110

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) -x + 1, -y + 2, -z + 1.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The authors are grateful for financial support from the Foundation of Jiangsu Key Laboratory of Marine Biotechnology (grant No. 2007HS009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2304).

References

- Bruker (2000). *SMART* (Version 5.059) and *SAINT* (Version 6.45A). Bruker AXS Inc., Madison, Wisconsin, USA.
- Kamm, M. A., Muller, L. S. & Talley, N. J. (2005). Am. J. Gastroenterol. 100, 362–372.
- Satish, S. C., Bernard, H. & Robert, W. S. (2001). Am. J. Gastroenterol. 9, 2584–2589.
- Schikowski, A., Thewissen, M. & Mathis, C. (2002). Neurogastroenterol. Motil. 10, 217–219.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Su, G. Q. & Zhu, C. Q. (2004). J. China Pharm. Univ. 35, 379-380.
- Sun, Z.-H., Yu, W.-T., Fan, J.-D., Xu, D. & Wang, X.-Q. (2007). Acta Cryst. E63, o2805–o2807.
- Tack, J., Caenepeel, P. & Fischler, B. (2001). Gastroenterology, pp. 526-535.

Acta Cryst. (2007). E63, o4198 [doi:10.1107/S1600536807047368]

Tegaserod maleate

Q. Cheng, X. Xu, T. Liu and C. Zhang

Comment

Tegaserod maleate is effective in the initial and retreatment of irritable bowel syndrome(IBS) and gastroesophageal reflux disease (GERO) as 5-HT4 receptor agonist (Satish *et al.*, 2001; Schikowski *et al.*, 2002). The study about tegaserod salts concentrates mainly in the clinical practice (Tack *et al.*, 2001; Kamm *et al.*, 2005), while structural studies of them have been rarely reported (Su & Zhu, 2004). As a part of our investigation on tegaserod salts, we present here the structure of the title compound, (I) (Fig. 1).

In (I), the guanidyl group is protonated. The C—N bond lengths in the guanidyl group show that the C—N bonds are conjugated, providing the planarity of guanidyl group. Similar result has been observed in other complex containing this group (Sun *et al.*, 2007).

A number of intermolecular N—H…O hydrogen bonds (Table 1) stabilize the crystal packing.

Experimental

To a solution of tegaserod (9.2 mmol) in 40 ml of anhydrous ethanol a solution of maleate(10 mmol) in 10 ml of anhydrous ethanol was added in 5 min at room temperature. The mixture was stirred for 1 h. The solvent was then evaporated and washed with anhydrous ethanol. The crude product was recrystallized from anhydrous ethanol to afford the desired product as colourless solid (m.p. 462 K). Single crystal of (I) were obtained by slow evaporation of aqueous ethanol(95%) solution at ambient temperature after 12 d.

Refinement

All hydrogen atoms were geometrically fixed at calculated positions (C—H 0.93–0.97 Å, N—H 0.86 Å, O—H 0.82 Å), and refined as riding with $U_{iso}(H) = 1.2-1.5 U_{eq}$ (parent atom). The crystal packing contains the voids of 120 Å³ centered at (0, 0.37, 1/4) and equivalent positions. Because of weak process of crystallization, all obtained single-crystals were of poor quality resulting in poor ratio observed/unique reflections of 0.35.

Figures

Fig. 1. The molecular structure of (I) showing atomic numbering. Displacement ellipsoids are drawn at the 30% probability level.

[(5-methoxyindol-3-yl)methylenehydrazino](pentylamino)methaniminium maleate

Crystal data

 $F_{000} = 1776$ $C_{16}H_{24}N_5O^+ \cdot C_4H_3O_4^ M_r = 417.47$ $D_{\rm x} = 1.180 {\rm Mg m}^{-3}$ Melting point: 462 K Monoclinic, C2/c Mo Kα radiation Hall symbol: -C 2yc $\lambda = 0.71073 \text{ Å}$ a = 24.873 (3) Å Cell parameters from 919 reflections *b* = 8.4962 (16) Å $\theta = 2.4 - 18.6^{\circ}$ c = 22.294 (2) Å $\mu = 0.09 \text{ mm}^{-1}$ $\beta = 93.732 (2)^{\circ}$ T = 298 (2) K $V = 4701.3 (11) \text{ Å}^3$ Plate, white Z = 8 $0.55 \times 0.42 \times 0.18 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	4110 independent reflections
Radiation source: fine-focus sealed tube	1423 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.058$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -29 \rightarrow 29$
$T_{\min} = 0.954, \ T_{\max} = 0.985$	$k = -9 \rightarrow 9$
9394 measured reflections	$l = -12 \rightarrow 26$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.049$	H-atom parameters constrained
$wR(F^2) = 0.084$	$w = 1/[\sigma^2(F_o^2) + (0.0053P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
4110 reflections	$\Delta \rho_{max} = 0.14 \text{ e } \text{\AA}^{-3}$
273 parameters	$\Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$
12 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

Prim methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.18528 (10)	0.3231 (4)	0.26144 (12)	0.0815 (9)
H1	0.1625	0.3205	0.2308	0.098*
N2	0.31664 (11)	0.4735 (3)	0.40465 (12)	0.0720 (8)
N3	0.35352 (11)	0.5854 (3)	0.42702 (12)	0.0842 (9)
Н3	0.3558	0.6767	0.4107	0.101*
N4	0.37930 (10)	0.4053 (4)	0.50059 (12)	0.0812 (9)
H4	0.3547	0.3445	0.4846	0.097*
N5	0.42242 (10)	0.6447 (3)	0.49566 (10)	0.0934 (10)
H5A	0.4434	0.6202	0.5264	0.112*
H5B	0.4257	0.7345	0.4785	0.112*
01	0.57296 (9)	1.0683 (3)	0.57298 (9)	0.0937 (8)
O2	0.63215 (9)	1.1500 (3)	0.64577 (9)	0.0990 (9)
O3	0.51639 (8)	0.8387 (3)	0.55244 (9)	0.0880 (8)
НЗА	0.5364	0.9147	0.5576	0.132*
O4	0.50672 (10)	0.6058 (3)	0.59162 (11)	0.1094 (10)
05	0.24227 (10)	-0.1033 (3)	0.43832 (12)	0.1085 (9)
C1	0.60303 (14)	1.0445 (5)	0.62047 (16)	0.0758 (11)
C2	0.60531 (14)	0.8864 (5)	0.64804 (14)	0.0783 (11)
H2	0.6320	0.8736	0.6789	0.094*
C3	0.57583 (14)	0.7612 (5)	0.63601 (15)	0.0853 (12)
H3B	0.5854	0.6755	0.6603	0.102*
C4	0.53053 (16)	0.7283 (5)	0.59181 (18)	0.0809 (12)
C5	0.21768 (13)	0.4462 (4)	0.27763 (15)	0.0801 (10)
H5	0.2187	0.5411	0.2570	0.096*
C6	0.24901 (13)	0.4099 (5)	0.32940 (14)	0.0663 (10)
C7	0.23417 (13)	0.2540 (4)	0.34535 (15)	0.0621 (10)
C8	0.19506 (14)	0.2007 (5)	0.30291 (15)	0.0685 (10)
C9	0.17191 (14)	0.0541 (5)	0.30518 (17)	0.0864 (12)
H9	0.1454	0.0217	0.2765	0.104*
C10	0.18961 (14)	-0.0418 (5)	0.35149 (18)	0.0922 (12)
H10	0.1753	-0.1425	0.3540	0.111*
C11	0.22844 (15)	0.0072 (5)	0.39489 (17)	0.0801 (12)
C12	0.25123 (12)	0.1520 (5)	0.39251 (14)	0.0670 (10)

H12	0.2776	0.1831	0.4215	0.080*
C13	0.28742 (13)	0.5141 (4)	0.35782 (15)	0.0769 (11)
H13	0.2914	0.6144	0.3420	0.092*
C14	0.38510 (15)	0.5443 (5)	0.47484 (17)	0.0736 (11)
C15	0.41036 (12)	0.3455 (4)	0.55299 (13)	0.0786 (10)
H15A	0.4057	0.4135	0.5872	0.094*
H15B	0.4483	0.3435	0.5455	0.094*
C16	0.39137 (12)	0.1818 (4)	0.56628 (13)	0.0759 (10)
H16A	0.3963	0.1153	0.5317	0.091*
H16B	0.3531	0.1851	0.5725	0.091*
C17	0.42096 (12)	0.1093 (4)	0.62119 (14)	0.0813 (11)
H17A	0.4592	0.1057	0.6151	0.098*
H17B	0.4160	0.1754	0.6559	0.098*
C18	0.40137 (13)	-0.0553 (5)	0.63385 (15)	0.0973 (12)
H18A	0.4080	-0.1226	0.6000	0.117*
H18B	0.3628	-0.0525	0.6380	0.117*
C19	0.42889 (14)	-0.1251 (4)	0.69043 (15)	0.1351 (16)
H19A	0.4671	-0.1275	0.6867	0.203*
H19B	0.4159	-0.2302	0.6960	0.203*
H19C	0.4211	-0.0617	0.7244	0.203*
C20	0.28068 (13)	-0.0593 (4)	0.48471 (15)	0.1021 (13)
H20A	0.3133	-0.0271	0.4675	0.153*
H20B	0.2880	-0.1473	0.5110	0.153*
H20C	0.2668	0.0264	0.5071	0.153*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.066 (2)	0.108 (3)	0.0679 (19)	-0.0014 (18)	-0.0122 (16)	-0.0043 (18)
N2	0.075 (2)	0.072 (2)	0.0670 (19)	-0.0053 (18)	-0.0096 (17)	0.0091 (18)
N3	0.098 (2)	0.070 (2)	0.081 (2)	-0.014 (2)	-0.0259 (18)	0.0077 (18)
N4	0.098 (2)	0.073 (3)	0.070 (2)	-0.022 (2)	-0.0145 (18)	0.0087 (18)
N5	0.120 (2)	0.080 (2)	0.078 (2)	-0.024 (2)	-0.0150 (18)	0.0037 (18)
01	0.1099 (19)	0.096 (2)	0.0706 (15)	-0.0253 (16)	-0.0285 (14)	0.0151 (14)
O2	0.113 (2)	0.095 (2)	0.0846 (17)	-0.0356 (16)	-0.0278 (15)	0.0050 (16)
O3	0.0922 (18)	0.098 (2)	0.0719 (16)	-0.0168 (16)	-0.0102 (14)	-0.0025 (15)
04	0.122 (2)	0.087 (2)	0.116 (2)	-0.0410 (18)	-0.0185 (17)	-0.0034 (18)
05	0.115 (2)	0.092 (2)	0.114 (2)	-0.0311 (18)	-0.0276 (18)	0.0317 (19)
C1	0.073 (3)	0.090 (4)	0.064 (3)	-0.015 (3)	0.005 (2)	0.003 (3)
C2	0.086 (3)	0.087 (3)	0.059 (2)	-0.009 (3)	-0.017 (2)	0.008 (2)
C3	0.090 (3)	0.085 (3)	0.078 (3)	-0.007 (3)	-0.018 (2)	0.009 (2)
C4	0.082 (3)	0.088 (4)	0.072 (3)	-0.009 (3)	0.000 (3)	-0.009 (3)
C5	0.074 (3)	0.098 (3)	0.067 (2)	0.000 (2)	0.0006 (17)	0.012 (2)
C6	0.061 (2)	0.081 (3)	0.055 (2)	-0.011 (2)	-0.0014 (16)	0.008 (2)
C7	0.049 (2)	0.074 (3)	0.064 (2)	-0.001 (2)	0.005 (2)	0.003 (2)
C8	0.054 (2)	0.090 (3)	0.061 (2)	-0.001 (2)	0.000 (2)	-0.005 (2)
C9	0.071 (3)	0.103 (4)	0.084 (3)	-0.016 (3)	-0.011 (2)	-0.010 (3)
C10	0.078 (3)	0.088 (3)	0.109 (3)	-0.026 (3)	-0.005 (3)	-0.008 (3)

C11	0.074 (3)	0.081 (4)	0.084 (3)	-0.021 (3)	-0.004(2)	0.007 (3)
C12	0.057 (2)	0.082 (3)	0.061 (2)	-0.007 (2)	-0.0043 (19)	0.002 (2)
C13	0.076 (3)	0.079 (3)	0.074 (2)	-0.009 (2)	-0.0054 (19)	0.018 (2)
C14	0.077 (3)	0.077 (3)	0.065 (3)	-0.016 (3)	-0.008 (2)	-0.010 (3)
C15	0.090 (3)	0.087 (3)	0.056 (2)	-0.001 (2)	-0.013 (2)	0.004 (2)
C16	0.077 (2)	0.085 (3)	0.066 (2)	-0.005 (2)	0.008 (2)	0.003 (2)
C17	0.087 (3)	0.094 (3)	0.062 (2)	0.016 (2)	0.003 (2)	0.007 (2)
C18	0.096 (3)	0.107 (4)	0.090 (3)	0.011 (3)	0.017 (2)	0.024 (3)
C19	0.144 (4)	0.158 (4)	0.104 (3)	0.032 (3)	0.010 (3)	0.043 (3)
C20	0.106 (3)	0.105 (3)	0.094 (3)	-0.012 (3)	-0.004 (3)	0.037 (3)
Geometric pa	arameters (Å, °)					
N1—C5		1.355 (4)	C7-		1.38	8 (4)
N1—C8		1.402 (4)	C7-	C12	1.40)7 (4)
N1—H1		0.8600	C8-	C9	1.37	4 (4)
N2—C13		1.280 (3)	C9–		1.36	5 (4)
N2—N3		1.391 (3)	C9–	-H9	0.93	00
N3—C14		1.329 (4)	C10		1.38	6 (4)
N3—H3		0.8600	C10	-H10	0.93	00
N4—C14		1.325 (4)	C11		1.35	6 (4)
N4—C15		1.450 (3)	C12	—Н12	0.93	00
N4—H4		0.8600	C13	—H13	0.93	00
N5-C14		1.322 (4)	C15		1.50	4 (4)
N5—H5A		0.8600	C15	—H15A	0.97	'00
N5—H5B		0.8600	C15	—H15B	0.97	/00
O1—C1		1.272 (3)	C16	—C17	1.51	8 (3)
O2—C1		1.262 (4)	C16	—H16A	0.97	/00
O3—C4		1.316 (4)	C16	—H16B	0.97	00
O3—H3A		0.8200	C17	—C18	1.51	3 (4)
O4—C4		1.198 (4)	C17	—H17A	0.97	/00
O5—C11		1.376 (4)	C17	—H17B	0.97	00
O5—C20		1.412 (3)	C18	—C19	1.51	6 (4)
C1—C2		1.477 (4)	C18	—H18A	0.97	/00
C2—C3		1.309 (4)	C18	—H18B	0.97	00
С2—Н2		0.9300	C19	—H19A	0.96	00
C3—C4		1.475 (4)	C19	—H19B	0.96	00
С3—Н3В		0.9300	C19	—H19C	0.96	00
C5—C6		1.385 (4)	C20	—H20A	0.96	00
С5—Н5		0.9300	C20	—H20B	0.96	00
C6—C13		1.421 (4)	C20	—H20C	0.96	000
С6—С7		1.426 (4)				
C5—N1—C8		108.8 (3)	O5-	C11C10	114.	6 (4)
C5—N1—H1		125.6	C11	C12C7	118.	8 (3)
C8—N1—H1		125.6	C11	—С12—Н12	120	.6
C13—N2—N2	3	115.8 (3)	C7-	C12H12	120	.6
C14—N3—N3	2	116.7 (3)	N2-	—С13—С6	121	.7 (3)
С14—N3—Н	3	121.6	N2-	—С13—Н13	119.	2
N2—N3—H3		121.6	C6-	C13H13	119.	2

C14—N4—C15	126.4 (3)	N5-C14-N4	121.1 (4)
C14—N4—H4	116.8	N5-C14-N3	118.5 (4)
C15—N4—H4	116.8	N4—C14—N3	120.4 (4)
C14—N5—H5A	120.0	N4—C15—C16	109.0 (3)
C14—N5—H5B	120.0	N4—C15—H15A	109.9
H5A—N5—H5B	120.0	C16—C15—H15A	109.9
C4—O3—H3A	109.5	N4—C15—H15B	109.9
C11—O5—C20	117.4 (3)	C16—C15—H15B	109.9
O2—C1—O1	123.2 (4)	H15A—C15—H15B	108.3
O2—C1—C2	117.0 (4)	C15—C16—C17	113.1 (3)
O1—C1—C2	119.7 (4)	C15—C16—H16A	109.0
C3—C2—C1	130.4 (4)	C17—C16—H16A	109.0
С3—С2—Н2	114.8	C15—C16—H16B	109.0
C1—C2—H2	114.8	C17—C16—H16B	109.0
C2—C3—C4	133.2 (4)	H16A—C16—H16B	107.8
С2—С3—Н3В	113.4	C18—C17—C16	112.4 (3)
С4—С3—Н3В	113.4	C18—C17—H17A	109.1
O4—C4—O3	120.4 (4)	С16—С17—Н17А	109.1
O4—C4—C3	121.6 (4)	C18—C17—H17B	109.1
O3—C4—C3	118.0 (4)	C16—C17—H17B	109.1
N1—C5—C6	110.1 (3)	H17A—C17—H17B	107.9
N1—C5—H5	125.0	C17—C18—C19	112.5 (3)
С6—С5—Н5	125.0	C17—C18—H18A	109.1
C5—C6—C13	124.0 (4)	C19—C18—H18A	109.1
C5—C6—C7	105.9 (3)	C17—C18—H18B	109.1
C13—C6—C7	130.2 (3)	C19—C18—H18B	109.1
C8—C7—C12	118.2 (4)	H18A—C18—H18B	107.8
C8—C7—C6	108.3 (4)	C18—C19—H19A	109.5
C12—C7—C6	133.5 (4)	C18—C19—H19B	109.5
C9—C8—C7	123.2 (4)	H19A—C19—H19B	109.5
C9—C8—N1	129.9 (4)	C18—C19—H19C	109.5
C7—C8—N1	106.9 (4)	H19A—C19—H19C	109.5
C10—C9—C8	117.0 (4)	H19B—C19—H19C	109.5
С10—С9—Н9	121.5	O5—C20—H20A	109.5
С8—С9—Н9	121.5	O5—C20—H20B	109.5
C9—C10—C11	121.6 (4)	H20A—C20—H20B	109.5
С9—С10—Н10	119.2	O5—C20—H20C	109.5
C11—C10—H10	119.2	H20A—C20—H20C	109.5
C12—C11—O5	124.1 (4)	H20B—C20—H20C	109.5
C12—C11—C10	121.3 (4)		
C13—N2—N3—C14	-178.5 (3)	C8—C9—C10—C11	1.1 (5)
O2—C1—C2—C3	171.5 (4)	C20—O5—C11—C12	3.3 (5)
01-C1-C2-C3	-9.2 (6)	C20—O5—C11—C10	-178.5 (3)
C1—C2—C3—C4	0.3 (7)	C9—C10—C11—C12	-1.2 (6)
C2—C3—C4—O4	-174.7 (4)	C9—C10—C11—O5	-179.5 (3)
C2—C3—C4—O3	4.7 (6)	O5-C11-C12-C7	179.1 (3)
C8—N1—C5—C6	-0.3 (4)	C10-C11-C12-C7	1.0 (5)
N1—C5—C6—C13	179.7 (3)	C8—C7—C12—C11	-0.7 (5)
N1—C5—C6—C7	-0.1 (4)	C6—C7—C12—C11	-180.0 (3)

C5—C6—C7—C8	0.5 (3)	N3—N2—C13—C6	178.5 (3)
C13—C6—C7—C8	-179.3 (3)	C5-C6-C13-N2	-177.9 (3)
C5—C6—C7—C12	179.8 (3)	C7—C6—C13—N2	1.9 (5)
C13—C6—C7—C12	0.0 (6)	C15—N4—C14—N5	1.0 (5)
C12—C7—C8—C9	0.7 (5)	C15—N4—C14—N3	-179.4 (3)
C6—C7—C8—C9	-179.9 (3)	N2—N3—C14—N5	176.8 (3)
C12—C7—C8—N1	179.9 (3)	N2—N3—C14—N4	-2.8 (5)
C6—C7—C8—N1	-0.7 (4)	C14—N4—C15—C16	-178.8 (3)
C5—N1—C8—C9	179.7 (3)	N4-C15-C16-C17	-179.1 (2)
C5—N1—C8—C7	0.6 (4)	C15-C16-C17-C18	-180.0 (3)
C7—C8—C9—C10	-0.9 (5)	C16—C17—C18—C19	-177.2 (3)
N1—C8—C9—C10	-179.9 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1···O2 ⁱ	0.86	2.01	2.829 (3)	159
N3—H3····O2 ⁱⁱ	0.86	1.97	2.809 (3)	164
N5—H5B····O1 ⁱⁱ	0.86	2.03	2.885 (3)	171
N5—H5A…O4	0.86	2.08	2.915 (4)	165
O3—H3A…O1	0.82	1.61	2.432 (3)	175
Symmetry codes: (i) $r = 1/2 = v + 3/2 = r = 1/2$.	(ii) $-r+1 - v+2 - r+1$			

Symmetry codes: (i) x-1/2, -y+3/2, z-1/2; (ii) -x+1, -y+2, -z+1.

